Powerful new synthetic vaccines to combat epidemics.

Scientists at the Bristol BioDesign Institute have combined synthetic biology with Oracle’s cloud computing software, engineering nanoparticles to create a new vaccine candidate against the mosquito-borne chikungunya virus.

What is chikungunya?

Chikungunya is an arbovirus which, like zika and dengue fever, is transmitted by mosquito bites. Its name derives from the East African Makonde language, meaning “to become contorted” due to the crippling effect that the virus has on the joints. Other symptoms include fever, nausea and fatigue. Chikungunya’s varying levels of severity, from a brief episode to weeks long debilitation, and even death in some cases, means that it is very commonly misdiagnosed. Currently, there are no available treatments or vaccines.

Where is it found?

Since its discovery in 1952, more than 60 countries have identified cases of chikungunya- mostly in Africa, Asia and the Indian subcontinent. “It is usually confined to sub-saharan Africa but because of deforestation and climate change it has started to spread all over the world”, says Prof. Imre Berger, a leading scientist on the vaccine publication. In the last year alone, there have been reports of mosquito-borne viruses including West Nile virus in Germany, dengue and chikungunya in Grenoble and Tarn, France, respectively.

“A major problem with vaccines at the moment is that they need to be refrigerated for storage and for transport, otherwise they become inactivated” Imre explains. This is what is known as a cold chain. Most vaccines, from polio to Hepatitis to the flu must be refrigerated, making the transferral of vaccines to remote or less affluent locations a real challenge.

Bypassing the cold chain problem.

Researchers at the Bristol Biodesign Institute, the French National Centre for Scientific Research (CNRS) and Imophoron Ltd have engineered a synthetic protein scaffold that could revolutionise the way that chikungunya vaccines are designed, produced and stored- without refrigeration.

To design this scaffold the collaborators created detailed 3D images of cryogenically frozen nanoparticles viewed through a high-resolution electron microscope, using high-performance cloud computing from Oracle.

How was the scaffold engineered?

“We have applied synthetic biology to engineer the surface of the ADDomerTM” (which the team have named the manipulated structure) says Imre. “By putting small and harmless pieces of the chikungunya virus on top of the surface of the ADDomer, we can create a particle which looks like chikungunya but it’s not.” This tricks the immune system into developing antibodies against the virus, effectively immunising the body before becoming exposed to the real thing.

The protein-based nanoparticle is a dodecahedron with a quasi-spherical shape capable of spontaneous self-organisation, which makes it ideal as a vaccine platform technology.

To understand the composition of the ADDomer at near-atomic resolution, massive amounts of cryo-electron microscope images of the protein were processed into Oracle’s cloud computing software to produce a single 3D structure.

What is cloud computing?

“Cloud computing fundamentally is the ability to be able to get computing or storage or networking access as a utility”, says Phil Bates, Oracle.

The unique combination of University of Bristol’s state-of-the-art cryo-electron microscopes used in conjunction with cloud computing meant that huge swathes of data could be analysed “in a fraction of the time and at much lower cost than previously thought possible” Dr Christopher Woods explains.

So how is it different to the other vaccine candidates?

“Completely by chance, we discovered that this particle was incredibly stable even after months, without refrigeration” explains Pascal Fender (CNRS). Unlike the previous chikungunya vaccine candidates, the ADDomer is thermostable- meaning that it can be stored for weeks at warm temperatures- thus eliminating the need for a cold chain.

Josh Bufton, from Bristol’s cryo-EM facility, says that “determining the structure of the ADDomer at near atomic resolution by cryo-Electron Microscopy allowed us to both validate the design of the ADDomer as an effective scaffold for vaccine development and gain insights into its exceptional thermostability.”

In short, the accuracy of cryo-electron microscopy, the speed and affordability of cloud computing and the synthetic engineering of the proteins has created a cheap, thermostable chikungunya vaccine candidate that can be produced en masse.

What does this mean?

“What we need to do now for the next step, is to continue the validation in other infectious disease areas and to continue to develop our technology” concludes Frederic Garzoni, Director of Imophoron Ltd. The viability of the ADDomer as a chikungunya vaccine candidate is just the beginning of addressing an entire universe of infectious diseases- both human and veterinary.

Imre adds “in our current paper, we already show more than a dozen other vaccine candidates which we have made. We now have more than 30 altogether and we are very interested to see how powerful our technology really is.”

Can we build a minimal form of life? A bottom-up perspective.

Hosted by Dr Thomas Gorochowski and PhD students Veronica Greco and Matthew Tarnowski from the Biocompute Lab

Dr Bert Poolman, a biochemist from the University of Groningen, visited Bristol on the 4th September to pose the question of whether it is possible to artificially create and control the physicochemistry of a cell. The ability to manipulate, control, or even create a new cell from scratch are fundamental directions for synthetic biology research.

What if we could build a cell in the lab?

Bert Poolman is part of an EU-wide project – aptly named BaSyC, or, ‘Building a Synthetic Cell’, which emerged in September 2017 combining leaders in physics, chemistry and biology from across the Netherlands to test out this theory.

“In the next decade they aim to achieve a physicochemical homeostatis in a cell where metabolic pathways and energy consumption/production systems can be better understood, optimised and synthetically built.” Veronica Greco explains. She was in the audience during his seminar.

Matthew Tarnowski, who also attended the seminar, said that Bert “highlighted some fascinating properties of cells: they are incredibly crowded, yet molecules move surprisingly fast within them.” Matthew was struck by Bert’s results demonstrating the sheer complexity of cells. “He [Bert] showed that engineering systems that mimic fundamental cellular processes is challenging”.

What was the audience reaction?

Intrigued audience members questioned the sustainability of such an ambitious project, such as how to overcome the challenge of building a synthetic ribosome and the new methods required to carefully assemble the numerous parts of a synthetic cell in a controllable way.

“The talk left me curious about how minimal life research could be completed responsibly: have the economic, social and environmental impacts been anticipated?” Matthew pointed out that the purpose behind building minimal forms of life went unanswered.

Veronica ended by noting that, “Overall, it is a very well thought out project that will require lots of different expertise and time, and surely it has all the credentials to give a big contribution to science and to change once again how the growing scientific field of synthetic biology is perceived.”

Are you a PhD or Postdoc?

BaSyC are offering various work packages to PhDs and Postdocs within one of their partner institutions. Due to the interdisciplinary nature of the work (combining physicists, chemists and biologists), “working at different locations and labs is more the rule than the exception”. There are opportunities to be involved in BaSyC activities: progress meetings and trainings, summer schools and the biennial international symposium on Building a Synthetic Cell.

Interested in joining the project?

Visit the BaSyC website for more information.

No jobs available for the specific part of the programme you are interested in? Feel free to send an open application to the corresponding PI directly – the PI’s contact details can be found at their people page.

For general questions and queries: info@basyc.nl 

 

BioDesign Innovation Fellowships

Do you want 12 months of paid entrepreneurial training to develop your biodesign business idea?

If so, we want to hear from you.

Our Bristol BioDesign Institute is partnering with the Quantum Technology Enterprise Centre (QTEC), a world leading incubator of entrepreneurially minded scientists with a passion for quantum research.

We are offering two 12-month Bio-Design Innovation Fellowships in order to produce the pioneers that will place the UK at the forefront of the transforming synthetic biology and biodesign sectors.

The QTEC programme, funded by the EPSRC Training and Skills Hub, is a full-time placement with taught courses that cover entrepreneurship, business and innovation with aspects of systems and design engineering. It includes;

  • 6 months of in-house, world-class teaching comprising of six units of of MBA level training and tutoring,
  • 6 months of developing innovations into start-up businesses culminating in investor pitches,
  • Travel and subsistence funding to meet customers and partners,
  • Access to the incubator space and research facilities,
  • Mentoring and coaching from Bristol BioDesign Institute experts, industrial partners and visiting entrepreneurs.

Click here to apply.

Closing date for applications: 23:59 on Monday 30th September 2019

Please note that this opening will close as soon as all positions have been filled. If interested, please apply for this fellowship as soon as possible.

Full details about the programme and how to apply can be found on the QTEC main site: http://www.bristol.ac.uk/qtec/

For further information, please contact:

Kathleen Sedgley – (BBI Scientific Manager k.sedgley@bristol.ac.uk)
Andy Collins – (QTEC Manager andy.collins@bristol.ac.uk)

Biodesign companies make a splash at the inaugural Launch: Great West science innovation awards

Last night we got dressed up in our best frocks to attend the first Launch: Great West awards. The event aimed to celebrate the growing number of new companies in the SW that leverage the world-class science base of our local universities. It was a buzzing and incredibly professional evening thanks to the hard work of the organisers at Spin Up Science. As a headline sponsor, the Bristol BioDesign Institute was there on mass and we were over the moon to see that companies that use biodesign technologies swept the board, winning five of the eight awards.

The winners were:

The Ones to Watch Award: Rosa Biotech who use biodesign to develop novel sensors inspired by the mammalian olfactory system

The Rising Star Award: CytoSeek who develop new biodesign technologies to enhance cell therapies

The BioDesign Award: Ceryx Medical develop bioelectronics to mimic nerve centres within the body

The Global Good Award: Imophoron use biodesign to develop new types of vaccines to emerging developing-world diseases

The Deal of the Year Award: Ziylo/Carbometrics who took a biodesign approach to the development of new glucose binding molecules leading to a trade sale to Novo Nordisk of up to $800M

This event really shows how far the science entrepreneurship community has grown in the last few years. As our local MP Thangam Debbonaire said in the opening speech, Bristol is growing an amazing innovation ecosystem that builds on the best elements of the University, local industries and city as a whole.

We are very much looking forward to the next event to see if biodesign companies can do even better!

BBI in Berlin: Better together

Max Planck Bristol Centre for Minimal Biology Director Professor Imre Berger, EPSRC SynBio CDT Student Julien Capin, and Bristol BioDesign Institute Scientific Manager Dr Kathleen Sedgley, were invited to present the Max Planck Bristol Centre for Minimal Biology at the British Embassy in Berlin on the 13 and 14 May 2019.

Russel Group Universities’ UK-Europe Knowledge Diplomacy Reception was opened by Chris Skidmore MP, and followed by a panel discussion Chaired by Dr Julie Maxton CBE, Executive Director of the Royal Society.

The UK and Germany work together more than they work with any other country in Horizon 2020, in fact the UK is involved in over half of all German-led EU bids. Between 2013 and 2017 70,000 scientific publications were co-authored between academics in the UK and Germany, 2,177 (3.1%) of which involved the University of Bristol.

Read more about the importance of UK-German collaboration, and the Max Planck Bristol Centre for Minimal Biology (page 11) of the Russell Group Knowledge Diplomacy Reception Brochure.

The second event was organised in collaboration between BUILA (the British Universities International Liaison Association), and their German counterpart DAIA, (the Deutsche Assoziation für Internationalen Bildungsaustausch) supported by the British Council and Universities UK International.

The Max Planck Bristol Centre for Minimal Biology was one of only 10 partnerships selected to to showcase collaborations between the UK, Germany and Europe. Here’s the team with University of Bristol’s Director International, Caroline Baylon.

Read the full ‘Better together’ news item

Bristol launches new Max Planck Bristol Centre for Minimal Biology

Minimal biology is a new emerging field at the interface between the physical and life sciences.  A partnership between the Max Planck-Bristol Centre for Minimal Biology,  the University of Bristol and the Max Planck Society for the Advancement of Science (MPG) in Germany was inaugurated on 27 March 2019.  …. read more