BBI Webinar: Professor Domitilla Del Vecchio, MIT

Since the start of lockdown 1.0 in March 2020, the BBI has been hosting a series of virtual seminars. Speakers have included Professors Anne Osbourn, Christine Orengo, Andreas Plueckthun, and many others. Lockdown has allowed us to broaden our speaker base on an international level, with academics from the US, Israel and Switzerland.

On 11 November, we had Professor Domitilla Del Vecchio from the Massachusetts Institute of Technology (MIT) give a webinar on ‘Context dependence of biological circuits: Predictive models and engineering solutions’. Panellists for the event were some of our own University of Bristol academics Dr. Thomas Gorochowski and Prof. Claire Grierson.

You can watch the full recording of the webinar here:

Druggable pocket discovered in SARS-CoV-2 Spike protein could stop virus spread

An international team of scientists, led by University of Bristol Professors Christiane Schaffitzel and Imre Berger, have unearthed a druggable pocket in the SARS-CoV-2 Spike protein that could be used to stop the virus in its tracks. ‘Spike protein’ refers to the multiple copies of glycoprotein that surround SARS-CoV-2. These ‘spikes’ bind to human cells, allowing the virus to penetrate the cells and replicate, damaging as they go. The collaborative study of SARS-CoV-2 is comprised of experts from Bristol UNCOVER Group, Bristol biotech Imophoron Ltd, the Max Planck Institute in Heidelberg and Geneva Biotech Sàrl.

Professor Imre Berger, Max Planck Bristol Director and Bristol BioDesign Institute Director

The team analysed the SARS-CoV-2 Spike protein at near atomic resolution by applying electron cryo-microscopy (Cryo-EM) and Oracle’s high-performance cloud computing to produce a 3D image of the virus’s molecular composition. After getting a look at the virus up-close, the scientists spotted a potential ‘game changer’ in defeating the current pandemic.

The researchers spotted the presence of a free fatty acid; linoleic acid (LA), hidden away in a pocket within the Spike protein. LA is vital to most cellular functions in humans. It is not naturally produced by the body, so humans must intake LA through diet. The acid helps to maintain cell membranes in the lungs, and regulates inflammation and immune modulation, which are all the functions that are implicated in Covid-infected patients. Professor Berger, Director of the Max Planck Bristol Centre for Minimal Biology, confirms that “the virus that is causing all this chaos, according to our data, grabs and holds on to exactly this molecule – basically disarming much of the body’s defences.”

Professor Christiane Schaffitzel from the School of Biochemistry

Professor Schaffitzel, from the University of Bristol’s School of Biochemistry, explained: “From other diseases we know that tinkering with LA metabolic pathways can trigger systemic inflammation, acute respiratory distress syndrome and pneumonia. These pathologies are all observed in patients suffering from severe COVID-19. A recent study of COVID-19 patients showed markedly reduced LA levels in their sera.”

The exploitation of the druggable pocket containing LA in SARS-CoV-2 could be the key to manipulating the virus. The discovery of a druggable pocket has previously been successfully exploited in rhinovirus, which causes the common cold. In rhinovirus, small molecules were tightly bound to the pocket to distort its molecular structure, and prevent its infectivity in human cells. The team are optimistic that their discovery of a similar pocket in SARS-CoV-2 can be used to develop small molecule anti-viral drugs against it.

Professor Berger adds: “Our discovery provides the first direct link between LA, COVID-19 pathological manifestations and the virus itself. The question now is how to turn this new knowledge against the virus itself and defeat the pandemic.”

Highlights of 2019

What. A. Year.

2019 has been a great year for the Bristol BioDesign Institute. We have seen and actively partaken in some truly amazing advancements in synthetic biology, formed some new and exciting international partnerships, hosted an array of remarkable speakers and produced some groundbreaking academic papers. From synthetic biology’s obscurity at the turn of the millennium to the bio-industrial revolution we are now facing, we have no doubt that our work in 2020 will continue to transform the global ecosystem as we currently conceive it. But before we enter the New Year – and the new decade – here are some of our best bits of 2019…

Internationalisation

In the last 12 months alone, we have curated relationships with several international institutions to pool our synbio expertise. The Max Planck Bristol Centre for Minimal Biology launched back in March. The UK continues to collaborate closely with Germany in particular, with the University of Bristol co-authoring 3.1% of all scientific publications produced from 2013 to 2017 between the two countries. In May, our Bristol Max Planck Centre was 1 of 10 European institutions selected to showcase their work at the British Embassy in Berlin. Most recently, one of our BBI Directors, Imre Berger, went to a meeting with Vabiotech representatives in Hanoi, Vietnam to share state-of-the-art vaccines technologies that could help prevent future global outbreaks of avian flu and rabies.

  • Max Planck Inauguration

Spin-Out Success Stories

Our award-winning BrisSynBio and Bristol BioDesign Institute spin-outs have continued to excel in their respective fields following Launch Great West Awards in June. ‘The Ones to Watch’ winners Rosa Biotech have secured significant angel investments to commercialise biosensing technology. The technology mimics mammals’ sense of smell, which could be developed to detect malaria, Parkinson’s and other chronic diseases in their early stages. Another spin-out, Cytoseek; ‘the Rising Star’ award winners, have raised £1.1 million for ground-breaking cell therapies to treat solid cancer tumours. Cytoseek use cell membrane augmentation technology to ‘supercharge’ patient’s cells against tumours, which are responsible for 85% of cancer-related deaths. Winners of ‘the Global Good’ award, Imophoron, have developed a novel vaccine platform from a synthetically engineered protein scaffold, named the Addomer®, for use on emerging infectious diseases. Most excitingly, this synthetic protein has been found to bypass the cold chain problem. Many vaccines currently require refrigeration, which makes storing and transporting them to inaccessible places a difficult and expensive challenge. The ADDomer® vaccine candidate is thermostable, which would make it an ideal vaccine vessel for delivery to Asia and sub-saharan Africa.

Synthetic Biology Seminar Series

The BBI have hosted some incredible speakers here at the University for our Synthetic Biology Seminar Series 2019, including Bert Poolman, Nico Sommerdijk, Mark Howarth and Jason Chin. All the seminars saw a massive turnout from the BBI community, with topics ranging from mineralisation of collagen fibril, to building synthetic ribosomes from scratch to reprogramming the genetic code. Our line-up of external speakers for Spring 2020 will be announced in the New Year, so keep an eye out on our website and social media (Twitter and LinkedIn) for these… 

Academic Papers

Our own excellent scientists and BBI Directors have produced some fascinating academic papers this year, including but not limited to; 

For more of our BBI publications visit our website.

Coming up…

Bristol Biodesign 2020, a one-day international symposium in synthetic biology and biodesign, is taking place next year on the 6th May 2020. The line-up of speakers for the programme include Doctors and Professors from the Weizmann Institute of Science, University College London, the John Innes Centre, the University of Zurich and the University of Bristol. For more details about the event, please head to our website. Hope to see you there!

Abstract Submission Deadline: 6 March 2020

Registration Deadline: 24 April 2020

See you in the new year!

 

DNA gets cool – the world of nucleic acid biomachinery.

Written by SynBio CDT students Claire Noble and Harry Thompson.

Do we have any chance of designing new ribosomes from scratch? Maybe not just yet, but that doesn’t mean Jon Bath, from the University of Oxford, isn’t getting started. While DNA origami hasn’t always been as glamorous as the world of protein design, that doesn’t mean there isn’t lots of exciting potential for new, DNA-based biomachinery.

The relatively simple nature of DNA folding based on base pairing has allowed for the construction of intricate and beautiful DNA structures. However, the field of designing DNA structure towards novel functionality is still being explored. In the past, DNA has been shown to be capable of moving along short tracks and assembling simple polymers in a directed way. Jon Bath is seeking to gain a deeper fundamental understanding of what dictates higher level folding in DNA origami, so that more complex designs can be attempted. He is making use of comparatively ‘simple’ DNA structures, with uncommon motif’s such as T-junctions, to try and elucidate the mechanisms behind self-assembly of complex origami.

By increasing our understanding of how DNA folds, design principles can then be applied towards constructions of functional origamis, of which there have been relatively few examples so far. A brave new world of DNA templated chemistry and molecular motors awaits!

A glimpse into the nanoscale world.

By Dr Thomas Gorochowski and insights from PhD student Janine McCaughey and Research Associate Ulrike Obst.

On the 2nd October 2019, Professor Nico Sommerdijk visited Bristol for the monthly BBI seminar and provided a picture of the hidden nanoscale world underpinning biology. Nico, who describes himself as a synthetic organic chemist who got carried away when introduced to the expanding capabilities of electron microscopy (EM), has since then never looked back. His work spans the development and application of new EM imaging and microscopy methods to not only image molecular assemblies in a single static pose, but also to record movies that help unravel the steps involved in their self-assembly.

The seminar focused on the mineralisation of collagen fibril that act as the basic building block of our bones. The nanoscopic dimensions and complex, hybrid composition of mineralised collagen makes it difficult to examine. Trickier still is monitoring the multi-step process that collagen goes through to mineralise, as it forms not only at a billionth of a meter in scale, but also in an intricate, aqueous environment.

Why is understanding this process important?

Understanding the process of collagen mineralization could enable the development of new treatments for bone defects and disorders of bone mineralization, such as rickets and hypophosphatasia.

Nico highlighted that “it will also offer new opportunities for the design of new bio-inspired materials”. This can be in the form of an in vitro unit that can be biologically engineered to form mineralized collagen to precise specifications. Unravelling the minute process of mineralization could therefore benefit many branches of science, from medicine and pharmaceuticals to bioengineering.

What did the audience think?

Janine McCaughey from the School of Biochemistry explained that “Nico presented an interesting approach to enabling live cell TEM in form of a liquid chamber. This allows for imaging of dynamic processes in high resolution compared to cryoTEM that requires one sample per timepoint and therefore only delivers very limited insight into such processes”.

Ulrike Obst, a Research Associate from Cellular and Molecular Medicine, was amazed by the sheer scope of the work. “It was fascinating to find out about so many different electron microscopy techniques, and especially how they can be combined to observe dynamic biological processes at a nanoscale!”

Ulrike was also amused by this idea of “having a mini-aquarium in a microscope”, where a tiny pocket of water allows for molecular self-assembly to be watched in real-time. “It is crazy that such things are possible. It’s like a window into another world.”

Interested to find out more?

As part of his recent ERC Advanced Grant award titled “A Google Earth Approach to Understanding Collagen Mineralization”, Nico recently moved to the Radboud Institute for Molecular Life Sciences in Nijmegen, Netherlands (https://www.radboudumc.nl/en). As part of this project, his group will try to figure out how collagen is assembled by developing and combining methods able to image from the nano- to cellular-scales, providing an unprecedented understanding of this crucial biological process.

Powerful new synthetic vaccines to combat epidemics.

Scientists at the Bristol BioDesign Institute have combined synthetic biology with Oracle’s cloud computing software, engineering nanoparticles to create a new vaccine candidate against the mosquito-borne chikungunya virus.

What is chikungunya?

Chikungunya is an arbovirus which, like zika and dengue fever, is transmitted by mosquito bites. Its name derives from the East African Makonde language, meaning “to become contorted” due to the crippling effect that the virus has on the joints. Other symptoms include fever, nausea and fatigue. Chikungunya’s varying levels of severity, from a brief episode to weeks long debilitation, and even death in some cases, means that it is very commonly misdiagnosed. Currently, there are no available treatments or vaccines.

Where is it found?

Since its discovery in 1952, more than 60 countries have identified cases of chikungunya- mostly in Africa, Asia and the Indian subcontinent. “It is usually confined to sub-saharan Africa but because of deforestation and climate change it has started to spread all over the world”, says Prof. Imre Berger, a leading scientist on the vaccine publication. In the last year alone, there have been reports of mosquito-borne viruses including West Nile virus in Germany, dengue and chikungunya in Grenoble and Tarn, France, respectively.

“A major problem with vaccines at the moment is that they need to be refrigerated for storage and for transport, otherwise they become inactivated” Imre explains. This is what is known as a cold chain. Most vaccines, from polio to Hepatitis to the flu must be refrigerated, making the transferral of vaccines to remote or less affluent locations a real challenge.

Bypassing the cold chain problem.

Researchers at the Bristol Biodesign Institute, the French National Centre for Scientific Research (CNRS) and Imophoron Ltd have engineered a synthetic protein scaffold that could revolutionise the way that chikungunya vaccines are designed, produced and stored- without refrigeration.

To design this scaffold the collaborators created detailed 3D images of cryogenically frozen nanoparticles viewed through a high-resolution electron microscope, using high-performance cloud computing from Oracle.

How was the scaffold engineered?

“We have applied synthetic biology to engineer the surface of the ADDomerTM” (which the team have named the manipulated structure) says Imre. “By putting small and harmless pieces of the chikungunya virus on top of the surface of the ADDomer, we can create a particle which looks like chikungunya but it’s not.” This tricks the immune system into developing antibodies against the virus, effectively immunising the body before becoming exposed to the real thing.

The protein-based nanoparticle is a dodecahedron with a quasi-spherical shape capable of spontaneous self-organisation, which makes it ideal as a vaccine platform technology.

To understand the composition of the ADDomer at near-atomic resolution, massive amounts of cryo-electron microscope images of the protein were processed into Oracle’s cloud computing software to produce a single 3D structure.

What is cloud computing?

“Cloud computing fundamentally is the ability to be able to get computing or storage or networking access as a utility”, says Phil Bates, Oracle.

The unique combination of University of Bristol’s state-of-the-art cryo-electron microscopes used in conjunction with cloud computing meant that huge swathes of data could be analysed “in a fraction of the time and at much lower cost than previously thought possible” Dr Christopher Woods explains.

So how is it different to the other vaccine candidates?

“Completely by chance, we discovered that this particle was incredibly stable even after months, without refrigeration” explains Pascal Fender (CNRS). Unlike the previous chikungunya vaccine candidates, the ADDomer is thermostable- meaning that it can be stored for weeks at warm temperatures- thus eliminating the need for a cold chain.

Josh Bufton, from Bristol’s cryo-EM facility, says that “determining the structure of the ADDomer at near atomic resolution by cryo-Electron Microscopy allowed us to both validate the design of the ADDomer as an effective scaffold for vaccine development and gain insights into its exceptional thermostability.”

In short, the accuracy of cryo-electron microscopy, the speed and affordability of cloud computing and the synthetic engineering of the proteins has created a cheap, thermostable chikungunya vaccine candidate that can be produced en masse.

What does this mean?

“What we need to do now for the next step, is to continue the validation in other infectious disease areas and to continue to develop our technology” concludes Frederic Garzoni, Director of Imophoron Ltd. The viability of the ADDomer as a chikungunya vaccine candidate is just the beginning of addressing an entire universe of infectious diseases- both human and veterinary.

Imre adds “in our current paper, we already show more than a dozen other vaccine candidates which we have made. We now have more than 30 altogether and we are very interested to see how powerful our technology really is.”

Can we build a minimal form of life? A bottom-up perspective.

Hosted by Dr Thomas Gorochowski and PhD students Veronica Greco and Matthew Tarnowski from the Biocompute Lab

Dr Bert Poolman, a biochemist from the University of Groningen, visited Bristol on the 4th September to pose the question of whether it is possible to artificially create and control the physicochemistry of a cell. The ability to manipulate, control, or even create a new cell from scratch are fundamental directions for synthetic biology research.

What if we could build a cell in the lab?

Bert Poolman is part of an EU-wide project – aptly named BaSyC, or, ‘Building a Synthetic Cell’, which emerged in September 2017 combining leaders in physics, chemistry and biology from across the Netherlands to test out this theory.

“In the next decade they aim to achieve a physicochemical homeostatis in a cell where metabolic pathways and energy consumption/production systems can be better understood, optimised and synthetically built.” Veronica Greco explains. She was in the audience during his seminar.

Matthew Tarnowski, who also attended the seminar, said that Bert “highlighted some fascinating properties of cells: they are incredibly crowded, yet molecules move surprisingly fast within them.” Matthew was struck by Bert’s results demonstrating the sheer complexity of cells. “He [Bert] showed that engineering systems that mimic fundamental cellular processes is challenging”.

What was the audience reaction?

Intrigued audience members questioned the sustainability of such an ambitious project, such as how to overcome the challenge of building a synthetic ribosome and the new methods required to carefully assemble the numerous parts of a synthetic cell in a controllable way.

“The talk left me curious about how minimal life research could be completed responsibly: have the economic, social and environmental impacts been anticipated?” Matthew pointed out that the purpose behind building minimal forms of life went unanswered.

Veronica ended by noting that, “Overall, it is a very well thought out project that will require lots of different expertise and time, and surely it has all the credentials to give a big contribution to science and to change once again how the growing scientific field of synthetic biology is perceived.”

Are you a PhD or Postdoc?

BaSyC are offering various work packages to PhDs and Postdocs within one of their partner institutions. Due to the interdisciplinary nature of the work (combining physicists, chemists and biologists), “working at different locations and labs is more the rule than the exception”. There are opportunities to be involved in BaSyC activities: progress meetings and trainings, summer schools and the biennial international symposium on Building a Synthetic Cell.

Interested in joining the project?

Visit the BaSyC website for more information.

No jobs available for the specific part of the programme you are interested in? Feel free to send an open application to the corresponding PI directly – the PI’s contact details can be found at their people page.

For general questions and queries: info@basyc.nl 

 

BioDesign Innovation Fellowships

Do you want 12 months of paid entrepreneurial training to develop your biodesign business idea?

If so, we want to hear from you.

Our Bristol BioDesign Institute is partnering with the Quantum Technology Enterprise Centre (QTEC), a world leading incubator of entrepreneurially minded scientists with a passion for quantum research.

We are offering two 12-month Bio-Design Innovation Fellowships in order to produce the pioneers that will place the UK at the forefront of the transforming synthetic biology and biodesign sectors.

The QTEC programme, funded by the EPSRC Training and Skills Hub, is a full-time placement with taught courses that cover entrepreneurship, business and innovation with aspects of systems and design engineering. It includes;

  • 6 months of in-house, world-class teaching comprising of six units of of MBA level training and tutoring,
  • 6 months of developing innovations into start-up businesses culminating in investor pitches,
  • Travel and subsistence funding to meet customers and partners,
  • Access to the incubator space and research facilities,
  • Mentoring and coaching from Bristol BioDesign Institute experts, industrial partners and visiting entrepreneurs.

Click here to apply.

Closing date for applications: 23:59 on Monday 30th September 2019

Please note that this opening will close as soon as all positions have been filled. If interested, please apply for this fellowship as soon as possible.

Full details about the programme and how to apply can be found on the QTEC main site: http://www.bristol.ac.uk/qtec/

For further information, please contact:

Kathleen Sedgley – (BBI Scientific Manager k.sedgley@bristol.ac.uk)
Andy Collins – (QTEC Manager andy.collins@bristol.ac.uk)